Photometric redshifts with the quasi Newton algorithm (MLPQNA) Results in the PHAT1 contest
نویسندگان
چکیده
منابع مشابه
Photometric Redshifts in the CFDF
The Canada–France Deep Fields (CFDF) is a large, deep, multi-colour imaging survey undertaken primarily at CFHT. It is about 10 times fainter than the CFRS (Lilly et al 1995a) and contains over 100 times as many galaxies. With three common fields, CFDF redshifts will be estimated photometrically using the CFRS spectroscopic catalogue as a training set. The project will yield large numbers of ga...
متن کاملPhotometric Redshifts in the Irac Shallow Survey
Accurate photometric redshifts are calculated for nearly 200,000 galaxies to a 4.5 micron flux limit of ∼ 13 μJy in the 8.5 deg2 Spitzer/IRAC Shallow survey. Using a hybrid photometric redshift algorithm incorporating both neural–net and template–fitting techniques, calibrated with over 15,000 spectroscopic redshifts, a redshift accuracy of σ = 0.06(1 + z) is achieved for 95% of galaxies at 0 <...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولEstimating Photometric Redshifts with Artificial Neural Networks
We calculate photometric redshifts from the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Galaxy Sample using artificial neural networks (ANNs). Different input sets based on various parameters (e.g. magnitude, color index, flux information) are explored. Mainly, parameters from broadband photometry are utilized and their performances in redshift prediction are compared. While any paramete...
متن کاملBayesian photometric redshifts with empirical training sets
We combine in a single framework the two complementary benefits of χ-template fits and empirical training sets used e.g. in neural nets: χ is more reliable when its probability density functions (PDFs) are inspected for multiple peaks, while empirical training is more accurate when calibration and priors of query data and training set match. We present a χ-empirical method that derives PDFs fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astronomy & Astrophysics
سال: 2012
ISSN: 0004-6361,1432-0746
DOI: 10.1051/0004-6361/201219755